/* Copyright (c) 2010, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#include "USBAPI.h"
#include "USBDesc.h"
#if defined(USBCON)
#define EP_TYPE_CONTROL 0x00
#define EP_TYPE_BULK_IN 0x81
#define EP_TYPE_BULK_OUT 0x80
#define EP_TYPE_INTERRUPT_IN 0xC1
#define EP_TYPE_INTERRUPT_OUT 0xC0
#define EP_TYPE_ISOCHRONOUS_IN 0x41
#define EP_TYPE_ISOCHRONOUS_OUT 0x40
/** Pulse generation counters to keep track of the number of milliseconds remaining for each pulse type */
#define TX_RX_LED_PULSE_MS 100
volatile u8 TxLEDPulse; /**< Milliseconds remaining for data Tx LED pulse */
volatile u8 RxLEDPulse; /**< Milliseconds remaining for data Rx LED pulse */
//==================================================================
//==================================================================
extern const u16 STRING_LANGUAGE[] PROGMEM;
extern const u16 STRING_IPRODUCT[] PROGMEM;
extern const u16 STRING_IMANUFACTURER[] PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptor PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptorA PROGMEM;
const u16 STRING_LANGUAGE[2] = {
(3<<8) | (2+2),
0x0409 // English
};
const u16 STRING_IPRODUCT[17] = {
(3<<8) | (2+2*16),
#if USB_PID == 0x8036
'A','r','d','u','i','n','o',' ','L','e','o','n','a','r','d','o'
#elif USB_PID == 0x8037
'A','r','d','u','i','n','o',' ','M','i','c','r','o',' ',' ',' '
#elif USB_PID == 0x803C
'A','r','d','u','i','n','o',' ','E','s','p','l','o','r','a',' '
#elif USB_PID == 0x9208
'L','i','l','y','P','a','d','U','S','B',' ',' ',' ',' ',' ',' '
#else
'U','S','B',' ','I','O',' ','B','o','a','r','d',' ',' ',' ',' '
#endif
};
const u16 STRING_IMANUFACTURER[12] = {
(3<<8) | (2+2*11),
#if USB_VID == 0x2341
'A','r','d','u','i','n','o',' ','L','L','C'
#elif USB_VID == 0x1b4f
'S','p','a','r','k','F','u','n',' ',' ',' '
#else
'U','n','k','n','o','w','n',' ',' ',' ',' '
#endif
};
#ifdef CDC_ENABLED
#define DEVICE_CLASS 0x02
#else
#define DEVICE_CLASS 0x00
#endif
// DEVICE DESCRIPTOR
const DeviceDescriptor USB_DeviceDescriptor =
D_DEVICE(0x00,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);
const DeviceDescriptor USB_DeviceDescriptorA =
D_DEVICE(DEVICE_CLASS,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);
//==================================================================
//==================================================================
volatile u8 _usbConfiguration = 0;
static inline void WaitIN(void)
{
while (!(UEINTX & (1<<TXINI)));
}
static inline void ClearIN(void)
{
UEINTX = ~(1<<TXINI);
}
static inline void WaitOUT(void)
{
while (!(UEINTX & (1<<RXOUTI)))
;
}
static inline u8 WaitForINOrOUT()
{
while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))))
;
return (UEINTX & (1<<RXOUTI)) == 0;
}
static inline void ClearOUT(void)
{
UEINTX = ~(1<<RXOUTI);
}
void Recv(volatile u8* data, u8 count)
{
while (count--)
*data++ = UEDATX;
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
}
static inline u8 Recv8()
{
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
return UEDATX;
}
static inline void Send8(u8 d)
{
UEDATX = d;
}
static inline void SetEP(u8 ep)
{
UENUM = ep;
}
static inline u8 FifoByteCount()
{
return UEBCLX;
}
static inline u8 ReceivedSetupInt()
{
return UEINTX & (1<<RXSTPI);
}
static inline void ClearSetupInt()
{
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
}
static inline void Stall()
{
UECONX = (1<<STALLRQ) | (1<<EPEN);
}
static inline u8 ReadWriteAllowed()
{
return UEINTX & (1<<RWAL);
}
static inline u8 Stalled()
{
return UEINTX & (1<<STALLEDI);
}
static inline u8 FifoFree()
{
return UEINTX & (1<<FIFOCON);
}
static inline void ReleaseRX()
{
UEINTX = 0x6B; // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
}
static inline void ReleaseTX()
{
UEINTX = 0x3A; // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
}
static inline u8 FrameNumber()
{
return UDFNUML;
}
//==================================================================
//==================================================================
u8 USBGetConfiguration(void)
{
return _usbConfiguration;
}
#define USB_RECV_TIMEOUT
class LockEP
{
u8 _sreg;
public:
LockEP(u8 ep) : _sreg(SREG)
{
cli();
SetEP(ep & 7);
}
~LockEP()
{
SREG = _sreg;
}
};
// Number of bytes, assumes a rx endpoint
u8 USB_Available(u8 ep)
{
LockEP lock(ep);
return FifoByteCount();
}
// Non Blocking receive
// Return number of bytes read
int USB_Recv(u8 ep, void* d, int len)
{
if (!_usbConfiguration || len < 0)
return -1;
LockEP lock(ep);
u8 n = FifoByteCount();
len = min(n,len);
n = len;
u8* dst = (u8*)d;
while (n--)
*dst++ = Recv8();
if (len && !FifoByteCount()) // release empty buffer
ReleaseRX();
return len;
}
// Recv 1 byte if ready
int USB_Recv(u8 ep)
{
u8 c;
if (USB_Recv(ep,&c,1) != 1)
return -1;
return c;
}
// Space in send EP
u8 USB_SendSpace(u8 ep)
{
LockEP lock(ep);
if (!ReadWriteAllowed())
return 0;
return 64 - FifoByteCount();
}
// Blocking Send of data to an endpoint
int USB_Send(u8 ep, const void* d, int len)
{
if (!_usbConfiguration)
return -1;
int r = len;
const u8* data = (const u8*)d;
u8 zero = ep & TRANSFER_ZERO;
u8 timeout = 250; // 250ms timeout on send? TODO
while (len)
{
u8 n = USB_SendSpace(ep);
if (n == 0)
{
if (!(--timeout))
return -1;
delay(1);
continue;
}
if (n > len)
n = len;
len -= n;
{
LockEP lock(ep);
if (ep & TRANSFER_ZERO)
{
while (n--)
Send8(0);
}
else if (ep & TRANSFER_PGM)
{
while (n--)
Send8(pgm_read_byte(data++));
}
else
{
while (n--)
Send8(*data++);
}
if (!ReadWriteAllowed() || ((len == 0) && (ep & TRANSFER_RELEASE))) // Release full buffer
ReleaseTX();
}
}
TXLED1; // light the TX LED
TxLEDPulse = TX_RX_LED_PULSE_MS;
return r;
}
extern const u8 _initEndpoints[] PROGMEM;
const u8 _initEndpoints[] =
{
0,
#ifdef CDC_ENABLED
EP_TYPE_INTERRUPT_IN, // CDC_ENDPOINT_ACM
EP_TYPE_BULK_OUT, // CDC_ENDPOINT_OUT
EP_TYPE_BULK_IN, // CDC_ENDPOINT_IN
#endif
#ifdef HID_ENABLED
EP_TYPE_INTERRUPT_IN // HID_ENDPOINT_INT
#endif
};
#define EP_SINGLE_64 0x32 // EP0
#define EP_DOUBLE_64 0x36 // Other endpoints
static
void InitEP(u8 index, u8 type, u8 size)
{
UENUM = index;
UECONX = 1;
UECFG0X = type;
UECFG1X = size;
}
static
void InitEndpoints()
{
for (u8 i = 1; i < sizeof(_initEndpoints); i++)
{
UENUM = i;
UECONX = 1;
UECFG0X = pgm_read_byte(_initEndpoints+i);
UECFG1X = EP_DOUBLE_64;
}
UERST = 0x7E; // And reset them
UERST = 0;
}
// Handle CLASS_INTERFACE requests
static
bool ClassInterfaceRequest(Setup& setup)
{
u8 i = setup.wIndex;
#ifdef CDC_ENABLED
if (CDC_ACM_INTERFACE == i)
return CDC_Setup(setup);
#endif
#ifdef HID_ENABLED
if (HID_INTERFACE == i)
return HID_Setup(setup);
#endif
return false;
}
int _cmark;
int _cend;
void InitControl(int end)
{
SetEP(0);
_cmark = 0;
_cend = end;
}
static
bool SendControl(u8 d)
{
if (_cmark < _cend)
{
if (!WaitForINOrOUT())
return false;
Send8(d);
if (!((_cmark + 1) & 0x3F))
ClearIN(); // Fifo is full, release this packet
}
_cmark++;
return true;
};
// Clipped by _cmark/_cend
int USB_SendControl(u8 flags, const void* d, int len)
{
int sent = len;
const u8* data = (const u8*)d;
bool pgm = flags & TRANSFER_PGM;
while (len--)
{
u8 c = pgm ? pgm_read_byte(data++) : *data++;
if (!SendControl(c))
return -1;
}
return sent;
}
// Does not timeout or cross fifo boundaries
// Will only work for transfers <= 64 bytes
// TODO
int USB_RecvControl(void* d, int len)
{
WaitOUT();
Recv((u8*)d,len);
ClearOUT();
return len;
}
int SendInterfaces()
{
int total = 0;
u8 interfaces = 0;
#ifdef CDC_ENABLED
total = CDC_GetInterface(&interfaces);
#endif
#ifdef HID_ENABLED
total += HID_GetInterface(&interfaces);
#endif
return interfaces;
}
// Construct a dynamic configuration descriptor
// This really needs dynamic endpoint allocation etc
// TODO
static
bool SendConfiguration(int maxlen)
{
// Count and measure interfaces
InitControl(0);
int interfaces = SendInterfaces();
ConfigDescriptor config = D_CONFIG(_cmark + sizeof(ConfigDescriptor),interfaces);
// Now send them
InitControl(maxlen);
USB_SendControl(0,&config,sizeof(ConfigDescriptor));
SendInterfaces();
return true;
}
u8 _cdcComposite = 0;
static
bool SendDescriptor(Setup& setup)
{
u8 t = setup.wValueH;
if (USB_CONFIGURATION_DESCRIPTOR_TYPE == t)
return SendConfiguration(setup.wLength);
InitControl(setup.wLength);
#ifdef HID_ENABLED
if (HID_REPORT_DESCRIPTOR_TYPE == t)
return HID_GetDescriptor(t);
#endif
u8 desc_length = 0;
const u8* desc_addr = 0;
if (USB_DEVICE_DESCRIPTOR_TYPE == t)
{
if (setup.wLength == 8)
_cdcComposite = 1;
desc_addr = _cdcComposite ? (const u8*)&USB_DeviceDescriptorA : (const u8*)&USB_DeviceDescriptor;
}
else if (USB_STRING_DESCRIPTOR_TYPE == t)
{
if (setup.wValueL == 0)
desc_addr = (const u8*)&STRING_LANGUAGE;
else if (setup.wValueL == IPRODUCT)
desc_addr = (const u8*)&STRING_IPRODUCT;
else if (setup.wValueL == IMANUFACTURER)
desc_addr = (const u8*)&STRING_IMANUFACTURER;
else
return false;
}
if (desc_addr == 0)
return false;
if (desc_length == 0)
desc_length = pgm_read_byte(desc_addr);
USB_SendControl(TRANSFER_PGM,desc_addr,desc_length);
return true;
}
// Endpoint 0 interrupt
ISR(USB_COM_vect)
{
SetEP(0);
if (!ReceivedSetupInt())
return;
Setup setup;
Recv((u8*)&setup,8);
ClearSetupInt();
u8 requestType = setup.bmRequestType;
if (requestType & REQUEST_DEVICETOHOST)
WaitIN();
else
ClearIN();
bool ok = true;
if (REQUEST_STANDARD == (requestType & REQUEST_TYPE))
{
// Standard Requests
u8 r = setup.bRequest;
if (GET_STATUS == r)
{
Send8(0); // TODO
Send8(0);
}
else if (CLEAR_FEATURE == r)
{
}
else if (SET_FEATURE == r)
{
}
else if (SET_ADDRESS == r)
{
WaitIN();
UDADDR = setup.wValueL | (1<<ADDEN);
}
else if (GET_DESCRIPTOR == r)
{
ok = SendDescriptor(setup);
}
else if (SET_DESCRIPTOR == r)
{
ok = false;
}
else if (GET_CONFIGURATION == r)
{
Send8(1);
}
else if (SET_CONFIGURATION == r)
{
if (REQUEST_DEVICE == (requestType & REQUEST_RECIPIENT))
{
InitEndpoints();
_usbConfiguration = setup.wValueL;
} else
ok = false;
}
else if (GET_INTERFACE == r)
{
}
else if (SET_INTERFACE == r)
{
}
}
else
{
InitControl(setup.wLength); // Max length of transfer
ok = ClassInterfaceRequest(setup);
}
if (ok)
ClearIN();
else
{
Stall();
}
}
void USB_Flush(u8 ep)
{
SetEP(ep);
if (FifoByteCount())
ReleaseTX();
}
// General interrupt
ISR(USB_GEN_vect)
{
u8 udint = UDINT;
UDINT = 0;
// End of Reset
if (udint & (1<<EORSTI))
{
InitEP(0,EP_TYPE_CONTROL,EP_SINGLE_64); // init ep0
_usbConfiguration = 0; // not configured yet
UEIENX = 1 << RXSTPE; // Enable interrupts for ep0
}
// Start of Frame - happens every millisecond so we use it for TX and RX LED one-shot timing, too
if (udint & (1<<SOFI))
{
#ifdef CDC_ENABLED
USB_Flush(CDC_TX); // Send a tx frame if found
if (USB_Available(CDC_RX)) // Handle received bytes (if any)
Serial.accept();
#endif
// check whether the one-shot period has elapsed. if so, turn off the LED
if (TxLEDPulse && !(--TxLEDPulse))
TXLED0;
if (RxLEDPulse && !(--RxLEDPulse))
RXLED0;
}
}
// VBUS or counting frames
// Any frame counting?
u8 USBConnected()
{
u8 f = UDFNUML;
delay(3);
return f != UDFNUML;
}
//=======================================================================
//=======================================================================
USBDevice_ USBDevice;
USBDevice_::USBDevice_()
{
}
void USBDevice_::attach()
{
_usbConfiguration = 0;
UHWCON = 0x01; // power internal reg
USBCON = (1<<USBE)|(1<<FRZCLK); // clock frozen, usb enabled
#if F_CPU == 16000000UL
PLLCSR = 0x12; // Need 16 MHz xtal
#elif F_CPU == 8000000UL
PLLCSR = 0x02; // Need 8 MHz xtal
#endif
while (!(PLLCSR & (1<<PLOCK))) // wait for lock pll
;
// Some tests on specific versions of macosx (10.7.3), reported some
// strange behaviuors when the board is reset using the serial
// port touch at 1200 bps. This delay fixes this behaviour.
delay(1);
USBCON = ((1<<USBE)|(1<<OTGPADE)); // start USB clock
UDIEN = (1<<EORSTE)|(1<<SOFE); // Enable interrupts for EOR (End of Reset) and SOF (start of frame)
UDCON = 0; // enable attach resistor
TX_RX_LED_INIT;
}
void USBDevice_::detach()
{
}
// Check for interrupts
// TODO: VBUS detection
bool USBDevice_::configured()
{
return _usbConfiguration;
}
void USBDevice_::poll()
{
}
#endif /* if defined(USBCON) */